Why Correlating Data is Bad and What to do About it
- Published
- Author
Correlating Data Welcome! This workshop is from Winder.ai. Sign up to receive more free workshops, training and videos. Correlations between features are bad because you are effectively telling the model that this information is twice more important than everything else. You’re feeding the model the same data twice. Technically it’s known as multicollinear, which is the generalisation to any number of features that could be correlated. Generally correlating features will decrease the performance of your model, so we need to find them and remove them.
Read more