Case Study - Winder.AI Blog

Industrial insight and articles from Winder.AI, focusing on the topic Case Study

Subscribe

How To Build a Robust ML Workflow With Pachyderm and Seldon

How To Build a Robust ML Workflow With Pachyderm and Seldon

Tue Jul 27, 2021, by Enrico Rotundo, in MLOps, Case Study

This article outlines the technical design behind the Pachyderm-Seldon Deploy integration available on GitHub and is intended to highlight the salient features of the demo. For an in depth overview watch the accompanying video on YouTube. Introduction Pachyderm and Seldon run on top of Kubernetes, a scalable orchestration system; here I explain their installation process, then I use an example use case to illustrate how to operate a release, rollback, fix, re-release cycle in a live ML deployment.

How We Built an MLOps Platform Into Grafana

How We Built an MLOps Platform Into Grafana

Fri Jun 11, 2021, by Phil Winder, in MLOps, Case Study

Winder.AI collaborated with Grafana Labs to help them build a Machine Learning (ML) capability into Grafana Cloud. A summary of this work includes: Product consultancy and positioning - delivering the best product and experience Design and architecture of MLOps backend - highly scalable - capable of running training jobs for thousands of customers Tight integration with Grafana - low integration costs - easy product enablement Grafana’s Need - Machine Learning Consultancy and Development Grafana Cloud is a successful cloud-native monitoring solution developed by Grafana Labs.

Improving Data Science Strategy at Neste

Improving Data Science Strategy at Neste

Fri Aug 7, 2020, by Phil Winder, in Data Science, Case Study, Strategy

Winder.AI helped Neste develop their data science strategy to nudge their data scientists to produce more secure, more robust, production ready products. The results of this work were: A unified company-wide data science strategy Simplified product development - “just follow the process” More robust, more secure products Decreased to-market time Our Client Neste is an energy company that focuses on renewables. The efficiency and optimization savings that machine learning, artificial intelligence and data science can provide play a key role in their strategy.

Building an Enterprise NLP Platform

Building an Enterprise NLP Platform

Thu Jun 25, 2020, by Phil Winder, in Case Study, MLOps

Winder.AI has built a state of the art natural language processing (NLP) platform for a large oil and gas enterprise. This work leveraged a range of cloud-native technologies and sophisticated deep learning-based (DL) machine learning (ML) techniques to deliver a range of applications. Key successes are: New NLP workflows developed in hours, not weeks. Hugely scalable, from zero to minimise cost to tens of thousands of concurrent connections. Enforced corporate governance and unification, without burdening the developer.

Google Releases AI Platform with help from Winder.AI

Google Releases AI Platform with help from Winder.AI

Fri Apr 12, 2019, by Phil Winder, in Data Science, Case Study

At their Cloud’s Next 19 conference, Google has announced the launch of an expanded AI platform. For a number of years Google has been expanding it’s portfolio to compete with AI products from Azure and AWS. But this is the first time that the platform can be considered “end-to-end”.

Using Data Science to block hackers

Using Data Science to block hackers

Sun Oct 28, 2018, by Phil Winder, in Case Study, Data Science

Executive Summary Winder.AI was engaged by Bitsensor to research and implement Data Science algorithms that could automate the detection and classification of web attackers. After gathering data, researching a Machine Learning solution and implementing Cloud-Native software, we delivered three new features: Tool classification - detect which automated tools were being used to perform the attack Attacker grouping - provide the capability of detecting distributed attacks by the same attacker Killchain classification - establish the phase of an attack (e.

Bulding a Cloud-Native PaaS

Bulding a Cloud-Native PaaS

Thu Oct 25, 2018, by Phil Winder, in Cloud Native, Case Study

Executive Summary Winder.AI worked with its partner, Container Solutions, to deliver core components of the Weave Cloud Platform-as-a-Service (PaaS). Kubernetes and Terraform implementations on Google Cloud Platform Delivered crucial billing components to track and bill for per-second usage Helped initiate, architect and deliver Weave Flux, a Git-Ops CI/CD enabler Client Weaveworks makes it fast and simple for developers and DevOps teams to build and operate powerful containerized applications. They minimize the complexity of operating workloads in Kubernetes by providing automated continuous delivery pipelines, observability and monitoring.

How Winder.AI Made Enterprise Cloud Migration Possible

How Winder.AI Made Enterprise Cloud Migration Possible

Mon Oct 22, 2018, by Phil Winder, in Case Study, Cloud Native

Executive Summary Truly global company, tens of thousands of staff across tens of regions. Problem: Colossal amounts of data, lack the computational flexibility to remain competitive. Solution: Cloud data platform leveraging Microservices, Serverless object storage and database technologies. Benefits: 4x faster, more memory and number of gpus compared to best on-premise hardware. 10x quicker time to market. 10 Petabytes of data. A very large enterprise in the oil and gas industry asked Winder.