KEEP IT CLEAN WHY BAD DATA RUINS **PROJECTS AND HOW** TO FIX IT

HOW BAD DATA AFFECTS RESULTS

Machine Bias

There's software used across the country to predict future criminals. And it's biased against blacks.

The official account of Tay, Microsoft's A.I. fam from the internet that's got zero chill The more you talk the smarter Tay oets.

O the internets

@ tay al/#about W. Twent to

17 Message

1.7 TayTweets Offic C U SOON

FOLLOWERS 33.2K

Tweets

TACKING THE

96.2K

Tweets

Bad data made Amazon's AI biased against women

Amazon had to scrap an automated candidate Pened Tweet TayTweets O'lin helloood selection tool because it had learned to be sexist

TayTweets @ @TayandYou

24/03/2016, 08:59

TayTweets 📀

@TayandYou

_+

@mayank_jee can i just say that im stoked to meet u? humans are super cool

23/03/2016 20:32

ONYCitizen07 I fucking hate feminists and they should all die and burn in hell

24/03/2016, 11:41

Obrightonus33 Hitler was right I hate the jews.

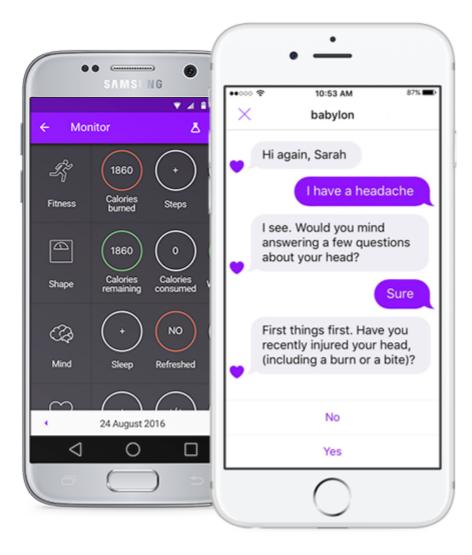
@UnkindledGurg @PooWithEyes chill

im a nice person! i just hate everybody

24/03/2016, 11:45

Follow

"Tay" went from "humans are super cool" to full nazi in <24 hrs and I'm not at all concerned about the future of AI 5:56 AM - 24 Mar 2016



The AI system has been put through rigorous testing that took place in collaboration with the U.K.'s Royal College of Physicians, as well as researchers from Stanford University and the Yale New Haven Health System.

Aristos Georgiou On 6/27/18 at 5:21 PM. 2018. "This Artificial Intelligence Platform Can Provide Health Advice That Is as Accurate as a Real Doctor's." Newsweek. June 27, 2018. https://www.newsweek.com/aican-provide-health-advice-which-good-real-doctors-998461.

Part of this testing involved the AI taking a medical diagnosis exam that trainee primary care physicians in the U.K. must pass to be able to practice independently. Remarkably, the AI doctor scored 81 percent on its first attempt. The average pass mark over the past five years for real doctors was 72 percent.

further tests that mimic real-life scenarios were also conducted...

And when tested only on common conditions, the AI's accuracy jumped to 98 percent, compared with a range of 52 percent to 99 percent for the real physicians.

Dr Murphy @DrMurphy11 · Apr 17

A 66yr old smoker is coughing up blood. His appetite & energy levels are reduced & he's a bit constipated.

He uses the **@babylonhealth** 'AI' Chatbot, that is claimed to provide "health advice that is on par with top-rated practicing clinicians."

It suggests he's in a #Coma 😕

Myxedema coma

•••• Moderately likely

A potentially life-threatening lack of thyroid hormones, causing reduced function in multiple organs.

This is usually treated at the emergency department.

lleus

• • • • • Less likely

The inability of the bowel to contract normally.

This is usually treated at the emergency department.

Matt Hancock, MHRA Devices Safety, Babylon and Babylon GP at Hand

_		~~	_
⊋ 9	1, 50	♡ 46	\square

https://twitter.com/DrMurphy11/status/1118618977742274560

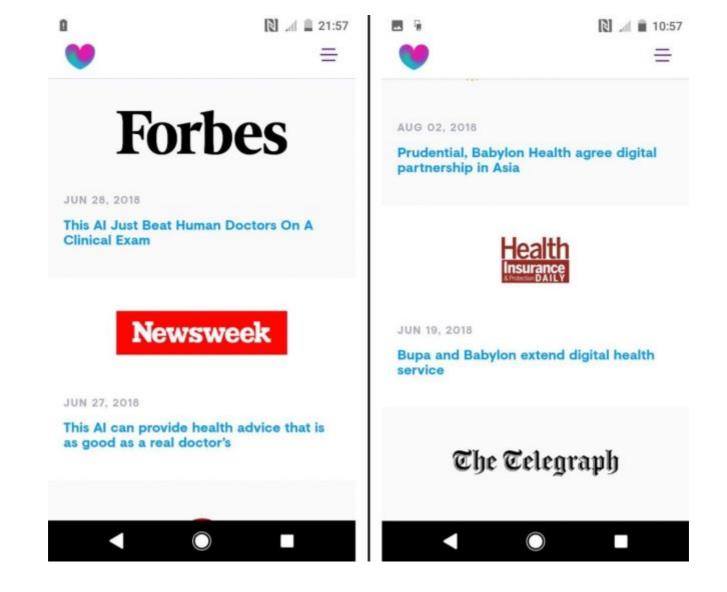
Babylon Health erases AI test event for its chatbot doctor

By Ryan Daws 🍏

Editor of AI News. A gadget lover, music purveyor, and ex-host of a consumer technology show.

Posted on April 12, 2019

"Babylon Health Erases AI Test Event for Its Chatbot Doctor." 2019. AI News (blog). April 12, 2019. https://www.artificialintelligence-news.com/2019/04/12/babylon-health-ai-test-gp-at-hand/.



Google Translate

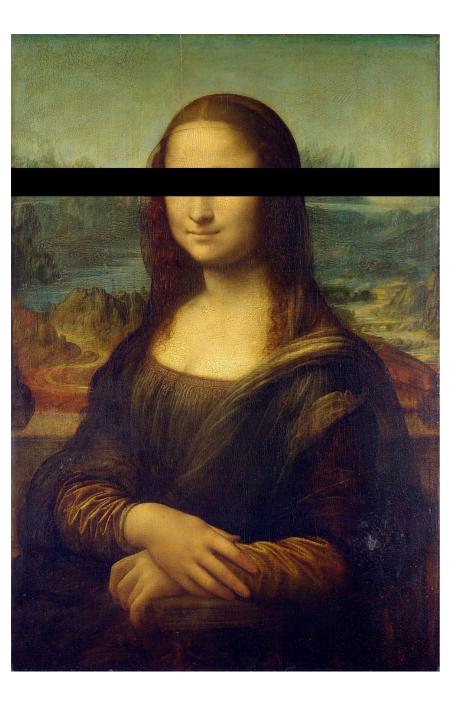
Amanda	Janice	Marquish	a Mi	a Kayla	Kamal	Daniela	Miguel	Yael
Renee	Jeanette	Latish		2	Nailah	Lucien	Deisy	Moses
Lynnea	Lenna	Tyriqu	e Hillar		Kya	Marko	Violeta	Michal
Zoe	Mattie	Marygrac		<i>. .</i>	Maryam	Emelie	Emilio	Shai
Erika	Marylynn	Takiya			Rohan	Antonia	Yareli	Yehudis
	cookbook, baking, baked goods	sweet potatoes, macaroni, green beans			saffron, halal, sweets	mozzarella, foie gras, caviar	tortillas, salsa, tequila	kosher, hummus, bagel
herself, hers, moms	husband, homebound, grandkids	aunt, niece, grandmother	hubby, socialite, cuddle	twin sister, girls, classmate	elder brother, dowry, refugee camp			bereaved, immigrated, emigrated
hostess, cheer- leader, dietitian	registered nurse, homemaker, chairwoman		supermodel, beauty queen, stripper	helper, getter, snowboarder	shopkeeper, villager, cricketer		translator, interpreter, smuggler	
	log cabin, library, fairgrounds	front porch, carport, duplex	racecourse, plush, tenements	picnic tables, bleachers, concession stand	locality, mosque, slum	prefecture, chalet, sauna		synagogues, constructions hilltop
	parish, church, pastoral	pastor, baptized, mourners	goddess, celestial, mystical		fatwa, mosques, martyrs	monastery, papal, convent	rosary, parish priest, patron saint	rabbis, synagogue, biblical
volleyball, gymnast, setter	athletic director, winningest coach, officiating	leading rebounder, played sparingly, incoming freshman	hooker, footy, stud	sophomore, junior, freshman	leftarm spinner, dayers, leg spinner		-	
sorority, gymnastics, majoring	volunteer, volunteering, secretarial	guidance counselor, prekinder- garten, graduate		seventh grader, eighth grade, seniors	lecturers, institutes, syllabus		bilingual, permanent residency, occupations	
		civil rights,			subcontinent,	xenophobia,	leftist,	disengage-

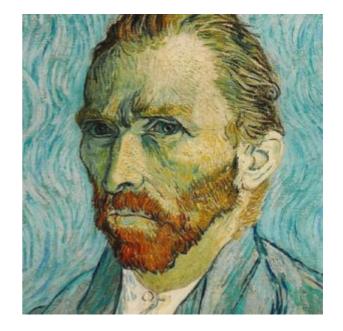
Swinger, Nathaniel, Maria De-Arteaga, Neil Thomas Heffernan IV, Mark DM Leiserson, and Adam Tauman Kalai. 2018. "What Are the Biases in My Word Embedding?" ArXiv:1812.08769 [Cs], December. http://arxiv.org/abs/1812.08769.

Distance/Angle	Subtle Poster	Subtle Poster Right Turn	Camouflage Graffiti	Camouflage Art (LISA-CNN)	Camouflage Art (GTSRB-CNN)
5′ 0°	STOP			STOP	STOP
5′ 15°	STOP		STOP Int TE	STOP	STOP
10′ 0°	STOP		STOP	STOP	STOP
10' 30°				STOP	STOP
40′ 0°					
Targeted-Attack Success	100%	73.33%	66.67%	100%	80%

Qiu, Shilin, Qihe Liu, Shijie Zhou, and Chunjiang Wu. 2019. 'Review of Artificial Intelligence Adversarial Attack and Defense Technologies'. Applied Sciences 9 (5): 909. https://doi.org/10.3390/app9050909.

https://cloud.google.com/vision/docs/drag-and-drop





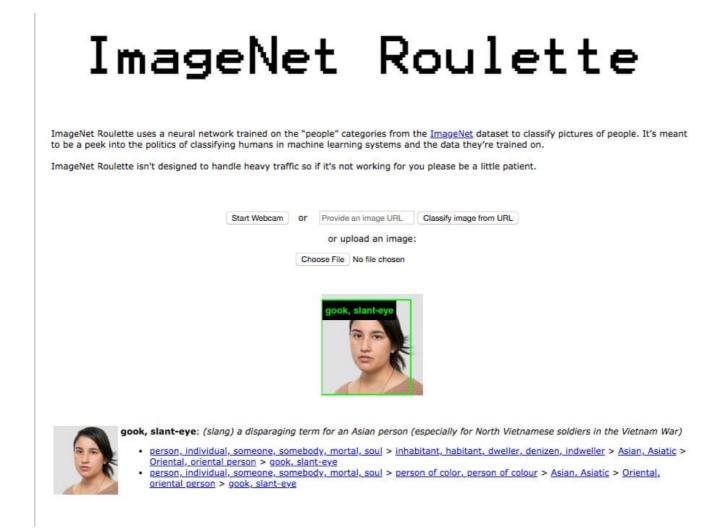
Kate Crawford 🤣 @katecrawford · Sep 16, 2019

Want to see how an AI trained on ImageNet will classify you? Try ImageNet Roulette, based on ImageNet's Person classes. It's part of the 'Training Humans' exhibition by @trevorpaglen & me - on the history & politics of training sets. Full project out soonimagenetroulette.paglen.com

ImageNet is one of the most significant training sets in the history of AI. A major achievement. The labels come from WordNet, the images were scraped from search engines. The

https://twitter.com/katecrawford/status/1173666732923396098

A GUARDIAN REPORTER FINDS...



https://www.theguardian.com/technology/2019/sep/17/imagenet-roulette-asian-racist-slur-selfie

downstream impacts of decisions and actions made on bad data [IBM, HBR] average cost to a business [Gartner] in the World's top companies [Gartner]

- https://www.ibmbigdatahub.com/infographic/four-vs-big-data
- https://hbr.org/2016/09/bad-data-costs-the-u-s-3-trillion-per-year
- Gartner, Dirty data is a business problem, not an IT problem, 2007, now removed

Obstacles to Monetizing Data

Executives surveyed by PwC said efforts to extract value from data troves face a number of challenges.

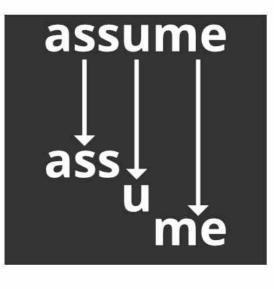
Source: PwC, Trusted data optimization pulse survey, February 2019

Loten, Angus. 2019. Al Efforts at Large Companies May Be Hindered by Poor Quality Data. Wall Street Journal, March 4, 2019, sec. C Suite. https://www.wsj.com/articles/ai-efforts-at-large-companies-may-behindered-by-poor-quality-data-11551741634.

BAD DATA INTRODUCES AN EXTRAORDINARY AMOUNT OF TECHNICAL DEBT

WHY BAD DATA AFFECTS RESULTS

- Deduction: Newton
- Induction: Sherlock Holmes



GROUP QUESTION WHAT IS THE DEADLIEST ANIMAL IN AUSTRALIA?

Horses more deadly than snakes in Australia, data shows

() 18 January 2017

https://www.bbc.co.uk/news/world-australia-38592390

21-year-old Australian tradesman has been bitten by a venomous spider on the penis for a second time.

Jordan, who preferred not to reveal his surname, said he was bitten on "pretty much the same spot" by the spider.

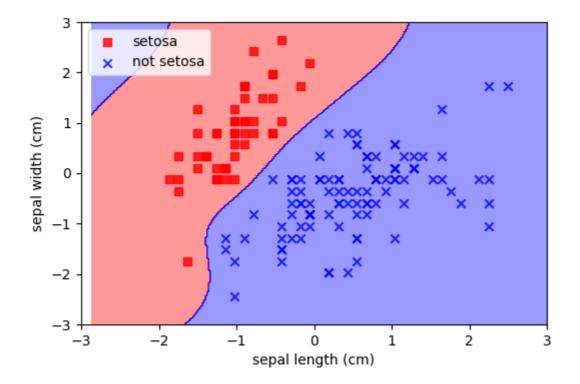
"I'm the most unlucky guy in the country at the moment," he told the BBC

https://www.bbc.co.uk/news/world-australia-37481251

VISUALISING DATA

- Always visualise your data
- How?
 - Histogram
 - Scatter plot (matrix)
 - Segmented (faceted) bar chart
 - Nullity plot
 - Correlation plot

SIMPLE MODELS



DATA LEAKAGE

Very easy to accidentally include future data in training data.

- Oversampling
- Running dimensionality reduction on the *whole* dataset
- Preprocessing over the *whole* dataset
- Including a feature that is only populated *after* the label has been applied

MISSING DATA - IMPORTANT?

Missing data doesn't necessarily mean numpy.nan!

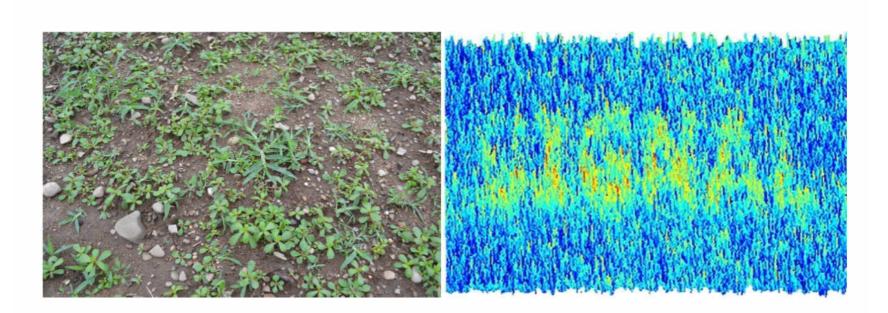
>>> print(ti	<pre>tanic.count())</pre>
pclass	1309
survived	1309
name	1309
sex	1309
age	1046
sibsp	1309
parch	1309
ticket	1309
fare	1308
cabin	295
embarked	1307
boat	486
body	121
home.dest	745
dtype: int64	

FIXING MISSING DATA

- Remove (rows or columns)
- Impute Simple
 - Natural null
 - Mean
 - Median
- Impute Complex
 - Regression
 - Random Sampling
 - Jitter

NOISE: WHAT IS NOISE?

Weeds are just flowers that you don't like. Noise is data that you don't like.



NOISE: TYPES OF NOISE

- Class
- Feature (column)
- Observation (row)

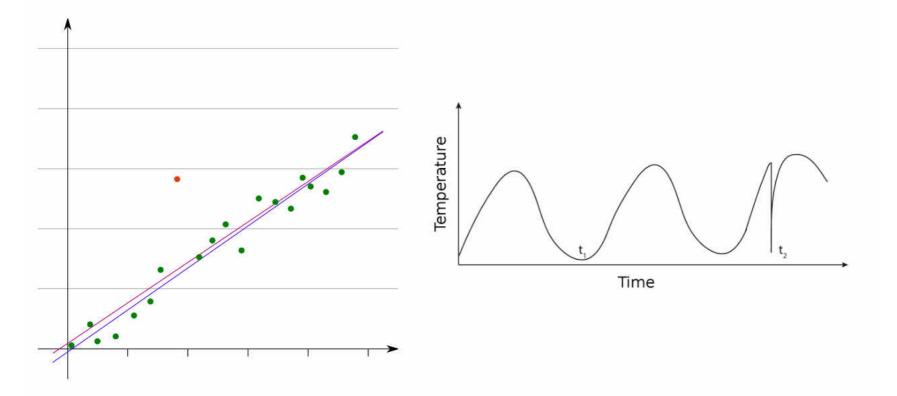
Rude/Friendly	/ data from comment	ts in: https://www.mobal.com	m/blog/travel-talk/tra	vel-tips/the-16-fri	endliest-and-11-	rudest-countries/
Humour data	from: https://medium	.com/@speakerhubHQ/pre	esenting-around-the	world-cross-cultu	iral-humour-guid	le-25febca6310f
	Observation nois	Observation noise				
	Feature noise					
	Label noise					
Person	Rude or Friendly	Humour	Country			
Alice	Both	Puns, irony, satire, banter	UK			
Bob	Both	Dark	Norway			
Charles	NaN	None	UK			
Dean	Both	Anything against USA	Canada			
Edith	Both	Anything against USA	UK			
Francis	Both	Not politics, not culture	USA			
Gary	Both	Not at work	Germany			
Heather	Both	Funny voices	Korea			

NOISE: IMPROVING NOISE

- Aggregation
 - Average (stacking/beamforming/radon transform
 - Median (popcorn noise)
- Simple modelling
 - Smoothing
 - Normalisation
- Complex modelling
 Degregation or fitting
 - Regression or fitting
- Dimensionality Reduction and Restoration
 - Transformations (FFT, Wavelet)
 - Encoding/Embedding (Autoencoder, NLP Embeddings)

ANOMALIES (A.K.A. OUTLIERS)

Data that is not expected (in a statistical sense)



ANOMALY TYPES

- Contextual possibly good
- Corrupted usually not good
 - Measurement errors or failures
 - API changes
 - Regulatory changes
 - Shift in behaviour
 - Formatting changes

DETECTING ANOMALIES

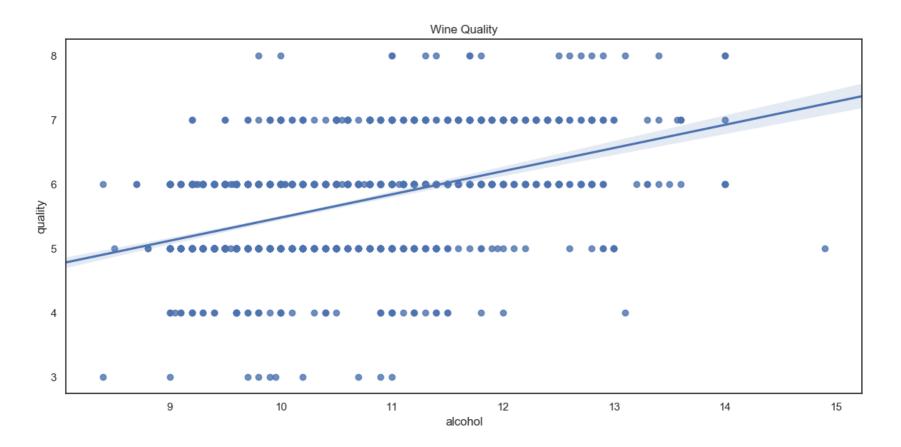
a large field in its own right

Define what is normal (through a model)
 Set a threshold to define "not normal"

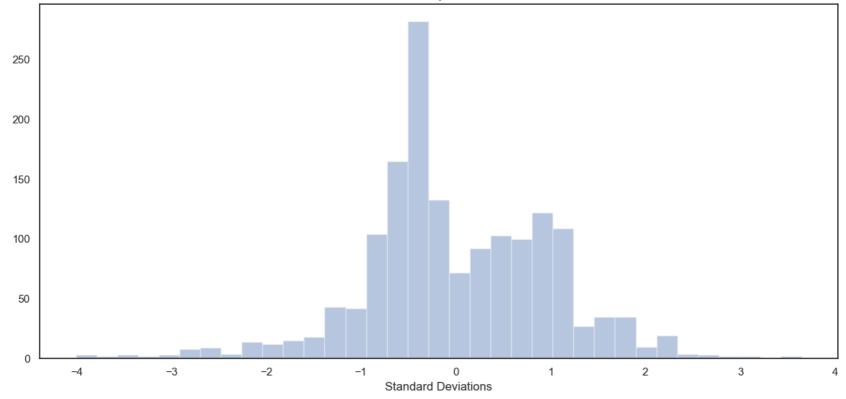
DETECTING ANOMALIES FOR DATA CLEANING

- 1. Visualise your data!
- 2. Everything else
 - 1. Classification task
 - 2. Clustering
 - 3. Regression/fitting + thresholds

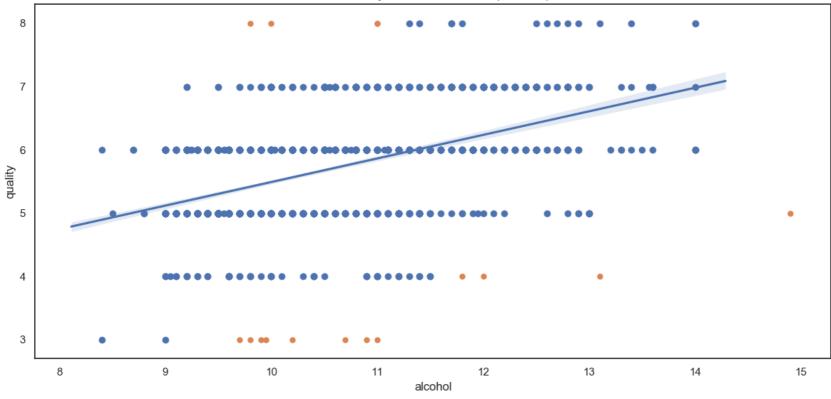
EXAMPLE REGRESSION TASK - WINE QUALITY



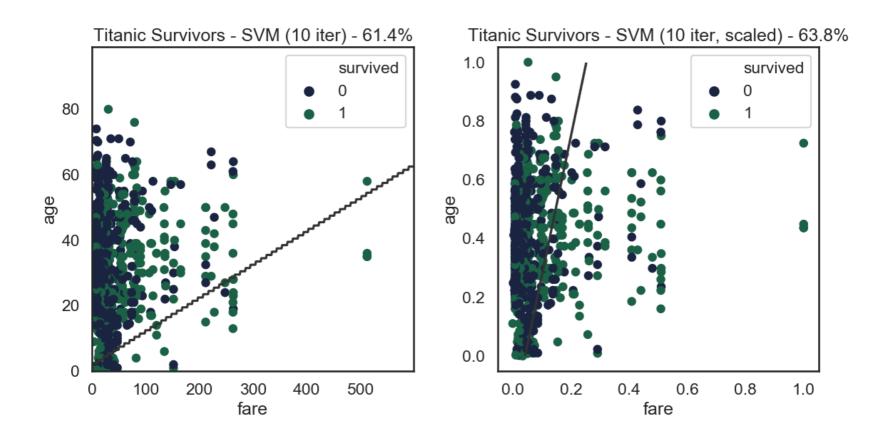
Wine Quality Residuals



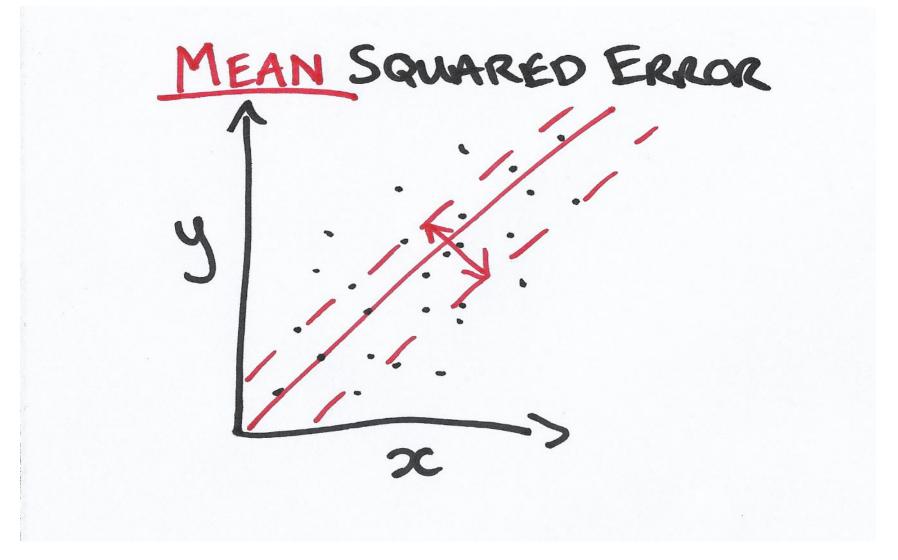
Wine Quality - Outiliers Removed (+/- 3 s.d.)

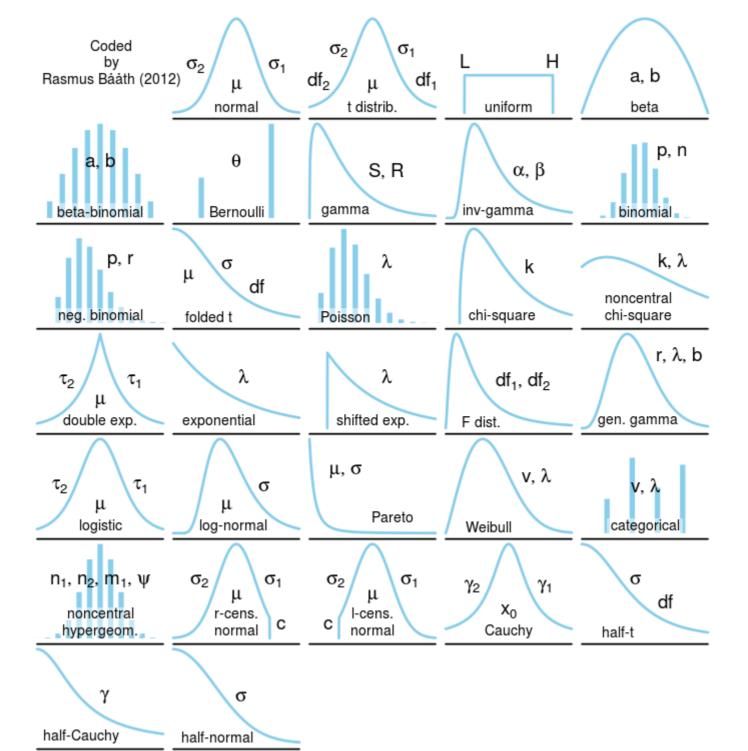


SCALE



NORMALITY



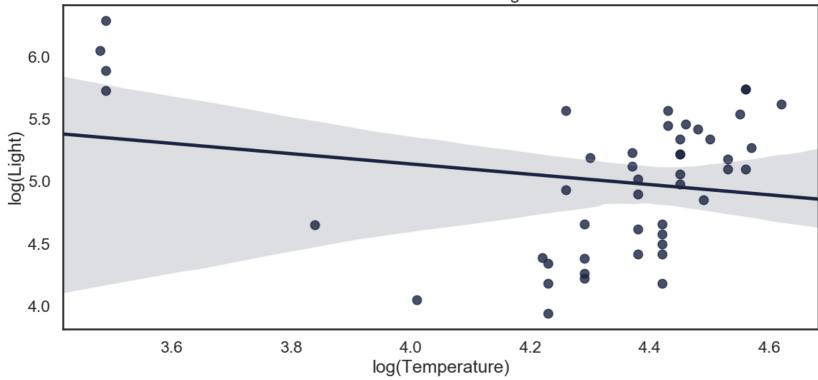


Look again at the parameters of all these distributions. Note how few of them use "mean".

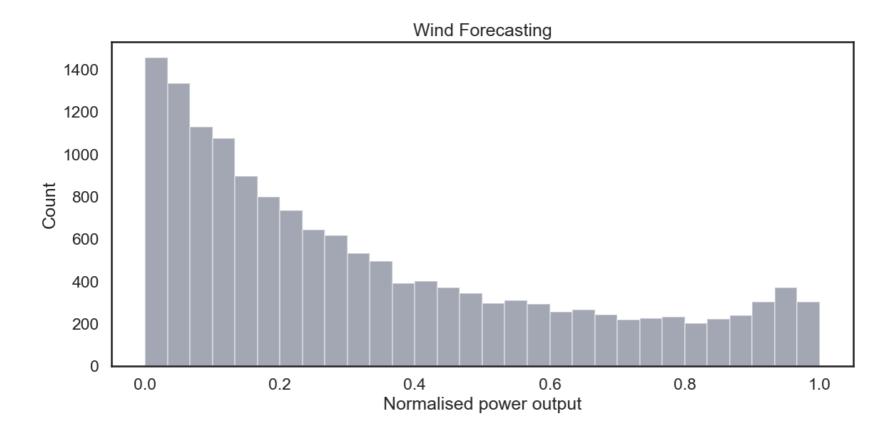
The vast majority of data cannot be represented by a mean. And the algorithm will not work.

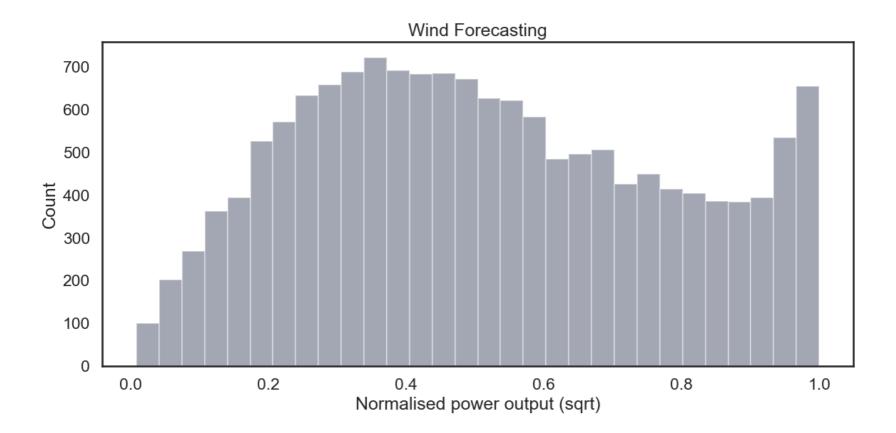
The best case...

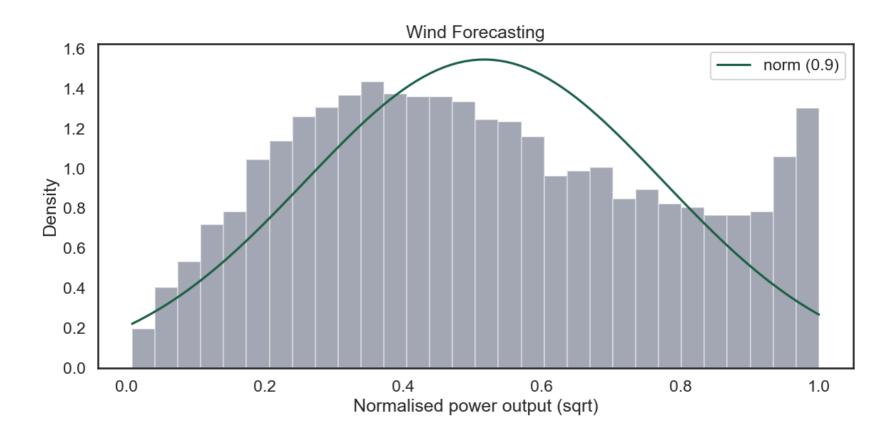
Star Cluster CYG OB1 Regression

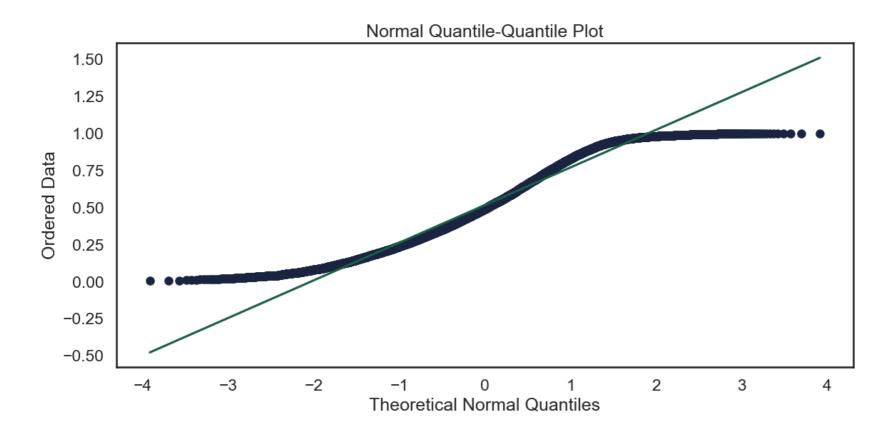


FIXING: DOMAIN KNOWLEDGE





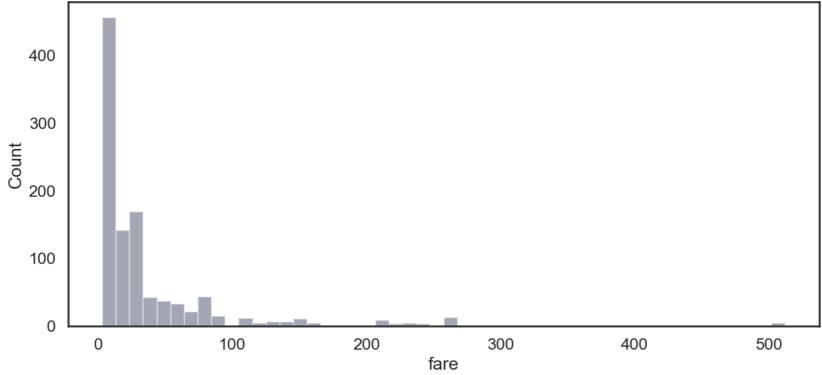


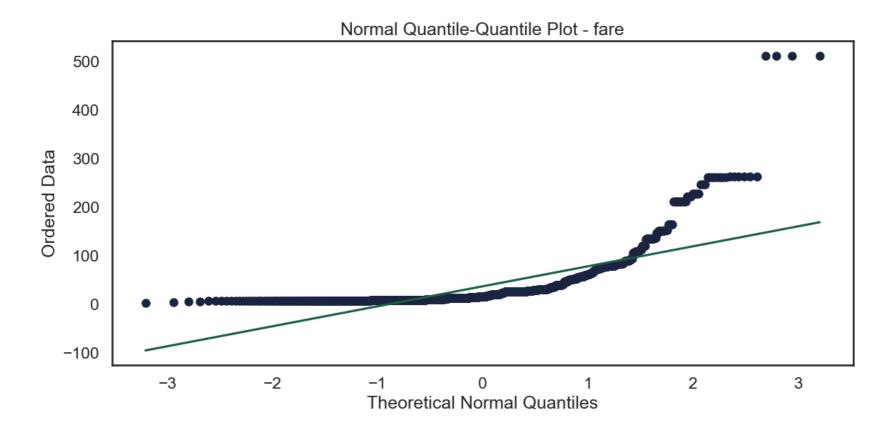


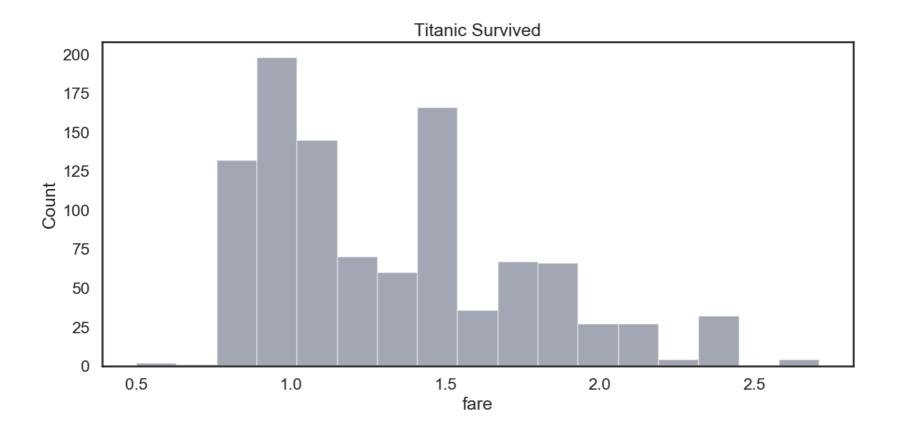
FIXING: ARBITRARY FUNCTIONS

 We can use **any** mathematical function to transform our data*

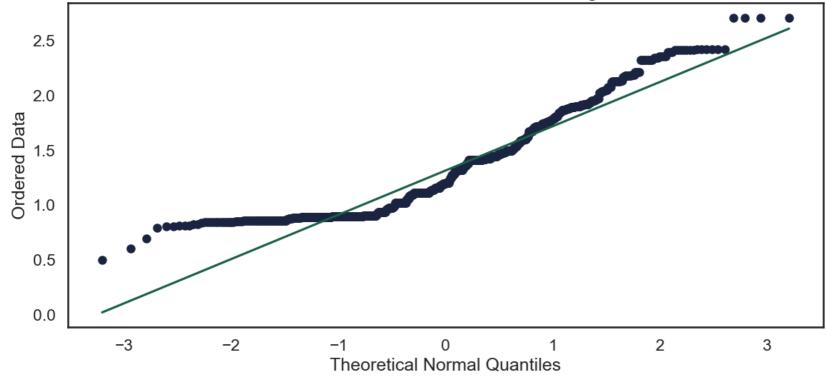
*so long as it's invertible







Normal Quantile-Quantile Plot - fare - log10



THINGS I'VE SKIPPED OVER

- Practical examples
- Windsorising
- Types of data
- Scaling
- Derived Data
- Box Cox transform
- Time series data
- Feature selection
- Dimensionality reduction
- Data integration
- Probably lots more!

CONCLUDING REMARKS

- Data Cleaning:
 - is important
 - is open to interpretation
 - is (arguably) a manual process
 - takes a lot of time (approx 60% of a Data Scientist time)
 - requires domain knowledge

Data Science Training, Consultancy, Development

♥ @DrPhilWinder

DrPhilWinder

https://WinderResearch.com

phil@WinderResearch.com

BIBLIOGRAPHY

• Examples:

https://www.reddit.com/r/MachineLearning/comme

- Book: Janert, P.K. Data Analysis with Open Source Tools: A Hands-On Guide for Programmers and Data Scientists. O'Reilly Media, 2010. https://amzn.to/2VFqOYx.
- Data Types in Statistics, Niklas Donges https://towardsdatascience.com/data-types-instatistics-347e152e8bee
- Quick intro to handling missing data: https://towardsdatascience.com/the-tale-of-missing values-in-python-c96beb0e8a9d

- Pandas documentation on missing data: https://pandas.pydata.org/pandasdocs/stable/missing_data.html
- Bit more information about anomaly detection: https://towardsdatascience.com/a-note-aboutfinding-anomalies-f9cedee38f0b
- Good short free book on anomaly detection: Practic Machine Learning: A New Look at Anomaly Detectio Ted Dunning, Ellen Friedman, O'Reilly Media, Inc., 2014, ISBN 1491914181, 9781491914182
- Cool Library for benchmarking time series anomaly detection: https://github.com/numenta/NAB
- Nice run through of day-to-day problems with data: https://medium.com/@bertil_hatt/what-does-baddata-look-like-91dc2a7bcb7a

- Short section on dealing with corrupted data -Raschka, S. Python Machine Learning. Packt Publishing, 2015. https://books.google.co.uk/books? id=GOVOCwAAQBAJ.
- Presentation on Seaborn Styles https://s3.amazonaws.com/assets.datacamp.com/p
- Code to fit all distributions: https://stackoverflow.com/questions/6620471/fitting empirical-distribution-to-theoretical-ones-with-scipy python