DataTalksClub - Industrial Applications of Reinforcement Learning

Reinforcement learning (RL), a sub-discipline of machine learning, has been gaining academic and media notoriety after hyped marketing “reveals” of agents playing various games. But these hide the fact that RL is immensely useful in many practical, industrial situations where hand-coding strategies or policies would be impractical or sub-optimal.

Following the theme of my new book (​), I present a rebuttal to the hyperbole by analysing five different industrial case studies from a variety of sectors.

You will learn where RL can be applied, how to spot challenges that fit inside the RL paradigm, and what pitfalls to watch out for. You will learn that RL is more than a bot in a game; it is the next frontier in applied artificial intelligence. I avoid using jargon to make this talk acceptable for a wider audience. I do expect that you have limited exposure to data science/machine learning in general.


More articles

Revolutionizing IVR Systems: Attaching Voice Models to LLMs

Discover how attaching voice models to large language models (LLMs) revolutionizes IVR systems for superior customer interactions.

Read more

Practical Use Cases for Retrieval-Augmented Generation (RAG)

Join our webinar to explore Retrieval Augmented Generation (RAG) use cases and advanced LLM techniques to enhance AI applications in 2024.

Read more