AI, Machine Learning, Reinforcement Learning, and MLOps Articles

Learn more about AI, machine learning, reinforcement learning, and MLOps with our insight-packed articles. Our AI blog delves into industrial use of AI, the machine learning blog is more technical, the reinforcement learning blog is industrially renowned, and our mlops blog discusses operational ML.

How To Build a Robust ML Workflow With Pachyderm and Seldon

Published
Author
Enrico Rotundo
Associate Data Scientist

This article outlines the technical design behind the Pachyderm-Seldon Deploy integration available on GitHub and is intended to highlight the salient features of the demo. For an in depth overview watch the accompanying video on YouTube. Introduction Pachyderm and Seldon run on top of Kubernetes, a scalable orchestration system; here I explain their installation process, then I use an example use case to illustrate how to operate a release, rollback, fix, re-release cycle in a live ML deployment.

Read more

How We Built an MLOps Platform Into Grafana

Published
Author
Dr. Phil Winder
CEO

Winder.AI collaborated with Grafana Labs to help them build a Machine Learning (ML) capability into Grafana Cloud. A summary of this work includes: Product consultancy and positioning - delivering the best product and experience Design and architecture of MLOps backend - highly scalable - capable of running training jobs for thousands of customers Tight integration with Grafana - low integration costs - easy product enablement Grafana’s Need - Machine Learning Consultancy and Development Grafana Cloud is a successful cloud-native monitoring solution developed by Grafana Labs.

Read more

Automating Cyber-Security with Reinforcement Learning

Published
Author
Dr. Phil Winder
CEO

The best way to improve the security of any system is to detect all vulnerabilities and patch them. Unfortunately this is rarely possible due to the extreme complexity of modern systems. The common suggestion is to test for security, often leveraging the expertise of security-focussed engineers or automated scripts. But there are two fundamental issues with this approach: 1) security engineers do not scale, and 2) scripts are unlikely to cover all security concerns to begin with, let alone deal with new threats or increased attack surfaces.

Read more

CloudNativeX Interview: Reinforcement Learning

Published
Author

Join Lee Razo and Phil Winder for this comprehensive introduction to Reinforcement Learning, an area of machine learning in which problems are tackled with intelligent agents which take actions to maximize a specified reward. Phil (quite literally) wrote the book on this topic and he takes us through the fundamentals of RL, some common use cases as well as tips on how even a small or mid-sized company can get started with and benefit from RL.

Read more

The Future of Transportation Infrastructure: Reinforcement Learning

Published
Author
Dr. Phil Winder
CEO

The lock-downs endured during the coronavirus pandemic have given many the opportunity to work from home, potentially for the first time. Along with the guilt of failing at home-schooling, trying to work with noisy babies or animals, the lock-down has entirely changed the way in which we travel. When I speak to people about the pandemic, the lack of commute is one of the few positives they can take away from this experience and has led some to even question why they are paying for accommodation in some of the most expensive areas in the UK.

Read more

InfoQ Podcast: Phil Winder on the History, Practical Application, and Ethics of Reinforcement Learning

Published
Author

InfoQ · Phil Winder on the History, Practical Application, and Ethics of Reinforcement Learning Charles Humble, friend and editor of InfoQ, was kind enough to ask me for an interview to talk more about my new book, in podcast format. From the blurb: In this episode of the InfoQ podcast Dr Phil Winder, CEO of Winder.AI, sits down with InfoQ podcast co-host Charles Humble. They discuss: the history of Reinforcement Learning (RL); the application of RL in fields such as robotics and content discovery; scaling RL models and running them in production; and ethical considerations for RL.

Read more

Solving Three Common Manufacturing Problems with Reinforcement Learning

Published
Author
Dr. Phil Winder
CEO

Like many industries, manufacturing is experiencing an explosion in both the growth of and access to data. The data is complex and multi-faceted, for example the data may originate from the production line, the environment, through usage, or even from users. When viewed in this light, the explosion is often called “big data” and the effect called smart manufacturing (USA) or industrie 4.0 (Germany). The data must be acted upon to be useful.

Read more

Inventory Control and Supply Chain Optimization with Reinforcement Learning

Published
Author
Dr. Phil Winder
CEO

Inventory control is the problem of attempting to optimize product or stock levels given the unique constraints and requirements of a business. It is an important problem because every goods-based business has to spend resources on maintaining stock levels so that they can deliver products that customers want. Every improvement to inventory control has a direct improvement the delivery of the business. Beginners study tactics, experts study logistics, so they say.

Read more

DataTalksClub - Industrial Applications of Reinforcement Learning

Published
Author

Reinforcement learning (RL), a sub-discipline of machine learning, has been gaining academic and media notoriety after hyped marketing “reveals” of agents playing various games. But these hide the fact that RL is immensely useful in many practical, industrial situations where hand-coding strategies or policies would be impractical or sub-optimal. Following the theme of my new book (https://rl-book.com​), I present a rebuttal to the hyperbole by analysing five different industrial case studies from a variety of sectors.

Read more

GOTO Book Club: How to Leverage Reinforcement Learning

Published
Author

In this episode of GOTO’s book club I speak to Rebecca Nugent, Feinberg professor of statistics and data science at Carnegie Mellon univeristy. We talk, at length, about the application of reinforcment learning, specifically how it could be a way of creating truly personalised teaching curricula. It’s a really interesting discussion and it’s great to get someone of Rebecca’s calibre to bounce ideas off.

Read more
}